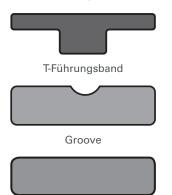


TECHNISCHE DATEN


Die glasfasergefüllten Führungsbänder vom Typ Hallite 533 aus Polyamid sind für hin- und hergehende Kolben- und Stangenführungsanwendungen ausgelegt. Der Werkstoff ist ein hitzestabilisiertes 33% glasverstärktes Polyamid 6.6, das hervorragende Führungseigenschaften aufweist. Der Werkstoff ist mit Hydraulik- und Schmierölen kompatibel. Der Werkstoff wird aufgrund der Quellung von Polyamid nicht für den Einsatz in wasserbasierten Flüssigkeiten (HFA) oder anderen Medien mit hohem Wasseranteil empfohlen. Für solche Anwendungen sind Hallite 506 oder Hallite 63 geeignet.

Hinweis: Metrische Größen auf Anfrage erhältlich. Wenn Sie weitere Informationen zu diesen oder anderen von Ihnen benötigten Größen benötigen, wenden Sie sich bitte an Ihren Hallite-Partner – wir beraten Sie gern.

533

T-Führungsband

Standard

MERKMALE

- Gespritzte Ausführung
- Einfache Montage
- Hohe Dauerfestigkeit
- Aufnahme hoher Querkräfte über einen großen Temperaturbereich
- Werkstoff mit hoher Druckfestigkeit
- Nach engen Toleranzen gefertigt
- Kosteneffizient

EINSATZBEDINGUNGEN

	METRISCH	ZOLL
Maximale Geschwindigkeit	5,0 m/sec	16,4 ft/s
Temperaturbereich	-40 bis 120°C	-40 bis 250°F

IINWEIS

Die genannten Einsatzbedingungen Druck, Temperatur und Geschwindigkeit sind jeweils Maximalwerte bei Verwendung von Hydraulikflüssigkeiten auf Mineralölbasis und sind in Abhängigkeit voneinander zu betrachten. Sie sollten nicht zur gleichen Zeit in der Anwendung auftreten. Weitere Einsatzbedingungen wie Dichtspalt, Oberflächengüte und weitere Variablen haben ebenfalls Einfluss auf die Funktion und Lebensdauer der Dichtung. Bitte wenden Sie sich für eine Beratung zu Ihrer konkreten Anwendung an unsere Technik.

EMPFOHLENE OBERFLÄCHENBESCHAFFENHEIT

	μMRA	μMRT	μINRA	μINRT
Dynamische Fläche – Stange Ød ₁	0,4	4 max	16	158
Statische Flächen – Stange ØD ₂ L ₁	3,2 max	16 max	125 max	630 max
Dynamische Fläche – Bohrung ØD ₁	0,4	4 max	16	158
Statische Flächen – Kolben Ød ₂ L ₁	3,2 max	16 max	125 max	630 max

TYPISCHE PHYSIKALISCHE EIGENSCHAFTEN

EIGENSCHAFT	PRÜFMETHODE	EINHEIT	WERT
Reißdehnung	ASTM D638	psi (MPa)	27.000 (186)
Bruchdehnung	ASTM D638	%	3
Biegespannung	ASTM D790	psi (MPa)	38.000 (262)
Biegemodul	ASTM D790	psi (MPa)	1.300.000 (8.965)
Izod-Schlagzähigkeit	ASTM D256	ft-lb/in (J/m)	2,1 (112)
Spezifisches Gewicht	ASTM D792		1,41
Druckfestigkeit	ASTM D695	psi (MPa)	25.500 (176)
Wasseraufnahme	ASTM D570	%	0,7
Härte - Rockwell	ASTM D785	R	120
Verformung unter Last bei 4.000 psi	ASTM D621	%	0,8
Scherfestigkeit	ASTM D732	psi (MPa)	12.500 (86)
Schrumpfung in Fließrichtung	ASTM D955	in/in	0,003

EINBAURÄUME, TOLERANZEN & EMPFEHLUNGEN ZUM FÜHRUNGSSPIEL

L, in	0,015 +0,010	-	-
r, in	0,016 max	-	-
Stange Ød, in	f9	-	-
ØD ₂ in	Ød ₁ +2S	+0,004 -0,000	-
ØD ₃ in	Ød ₁ +G	-	-
Kolben ØD ₁ in	H11	-	-
Ød ₂ in	ØD ₁ -2S	+0,000 -0,0004	-
Ød ₃ in	ØD ₁ -G	-	-
1/8 Nennquerschnitte - in	S = 0,126	G max 0,080	G min 0,031
3/32 Nennquerschnitte - in	S = 0,093	G max 0,060	G min 0,031

EMPFEHLUNGEN RADIALES SPALTMASS

	ZOLL		
	G MIN (MIN. SPALTMASS)	G MAX (MAX. SPALTMASS)	
1/8 Zoll (0,125 Zoll) Nennquerschnitt	0,031	0,080	
3/32 Zoll (0,093 Zoll) Nennquerschnitt	0,031	0,060	
1/16 Zoll (0,062 Zoll) Nennquerschnitt	0,031	0,040	