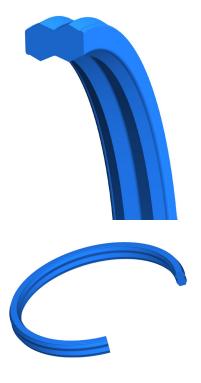


Polyurethane Static Seal, Twin Lip for Rod or Bore Sealing Applications

DESIGN


Hallite 668 twin lip static seal is designed to seal the joint between the gland and the cylinder bore or between the rod and the piston. The sealing element is a very effective replacement for the conventional O-ring and back-up ring combination in heavy-duty applications.

The main advantage is its high groove stability compared to a conventional O-ring thus reducing fluid transfer caused by pumping.

Every nominal diameter of the Hallite 668 is suitable for a range of bore diameter, $\emptyset D_1$, or rod diameters, $\emptyset d_1$.

The Hallite 668 is moulded in Hythane® 181, Hallite's high-performance polyurethane, for easy installation and excellent low temperature performance.

The Hallite 668 is generally supplied as a bespoke part. Contact your local Hallite sales team for details.

FEATURES

- Replaces an O-ring and back-up combination
- Provides reliable high pressure sealing
- High groove stability to eliminate fluid transfer
- Suitable for static rod or bore sealing

MATERIALS

As standard, this product comes in the following material. Contact your local Hallite technical team if you would like to find out if this profile can be made in a custom material to suit your application. For further material details, please refer to the Hallite Material Table.

MATERIAL OPTIONS	Name	Туре	Colour
Standard	Hythane® 181	TPU-EU	Blue

TECHNICAL DETAILS

OPERATING CONDITIONS	METRIC	INCH	
Temperature Range	-45°C + 110°C	-50°F + 230°F	
Maximum Pressure	500 bar	7500 psi	

Data given are maximum values and can apply depending on specific application. Maximum ratings of temperature, pressure, or operating speeds are dependent on fluid medium, surface, gap value, and other variables such as dynamic or static service. Maximum values are not intended for use together at the same time, e.g. max temperature and max pressure. Please contact your Hallite technical representative for application support.

μmRa	μmRz	μmRt	μinRa	μinRz	μinRt
1.6 max	6.3 max	10 max	63 max	250 max	394 max
1.6 max	6.3 max	10 max	63 max	250 max	394 max
3.2 max	10 max	16 max	125 max	394 max	630 max
ØD₁	Ød ₁	ØD₂	Ød ₂	ØD₃	$\emptyset d_3$
H8	-	-	h9	-	f7
-	f7	Н9	-	H8	-
	1.6 max 1.6 max 3.2 max	1.6 max 6.3 max 1.6 max 6.3 max 3.2 max 10 max	1.6 max 6.3 max 10 max 1.6 max 6.3 max 10 max 3.2 max 10 max 16 max	1.6 max 6.3 max 10 max 63 max 1.6 max 6.3 max 10 max 63 max 3.2 max 10 max 16 max 125 max ØD1 Ød1 ØD2 Ød2 H8 - - h9	1.6 max 6.3 max 10 max 63 max 250 max 1.6 max 6.3 max 10 max 63 max 250 max 3.2 max 10 max 16 max 125 max 394 max ØD1 Ød1 ØD2 Ød2 ØD3 H8 - - h9 -